Spectral multipliers in group algebras and noncommutative Calderón-Zygmund theory
نویسندگان
چکیده
In this paper we solve three problems in noncommutative harmonic analysis which are related to endpoint inequalities for singular integrals. first place, prove that an L2-form of Hörmander's kernel condition suffices the weak type (1,1) Calderón-Zygmund operators acting on matrix-valued functions. To end, introduce improved CZ decomposition martingale filtrations von Neumann algebras, and apply a very simple unconventional argument notably avoids pseudolocalization. second establish as well L1 over nondoubling measures polynomial growth, line work Tolsa Nazarov/Treil/Volberg. The above results valid other algebras positive two open formulated 2009. An even more interesting problem is lack Fourier Schur multipliers nonabelian groups. Given locally compact group G equipped with conditionally negative length ψ:G→R+, Herz-Schur symbol m∘ψ satisfying Mikhlin terms ψ-cocycle dimension (1,1). Our result extends amenable groups imposes sharp regularity conditions symbol. proof crucially combines our new methods novel forms recent transference techniques. This gives much expected inequality complements L∞→BMO estimates proved 2014 by Junge, Mei Parcet. Dans ce papier, résout trois problèmes d'analyse harmonique non-commutative qui sont liés aux inégalités limites pour les intégrales singulières. Premièrement, démontre qu'une d'intégrabilité L2 de Hörmander suffit obtenir l'inégalité faible opérateurs agissant sur des fonctions à valeurs matricielles. Pour cela, définit une décomposition améliorée non-commutatives et applique un non conventionnel mais permet notamment d'éviter l'usage la pseudo-localisation. Par suite, établit le même résultat mesures doublantes croissance polynomiale dans lignée travaux Tolsa/Treil/Volberg. Les résultats ci-dessus restent vrais d'autres algèbres répondent positivement deux questions posées en Un problème plus intéressant encore est manque d'inégalité limite multiplicateurs singuliers groupes non-abéliens. Etant donné groupe discret équipé d'une longueur conditionnellement négative que associés symbole forme satisfaisant terme cocycle ψ faible. Ce s'étend moyennables fait intervenir régularité optimales. La preuve combine nouvelles techniques d'intégrales singulières transfert. Cette inégalité donne complément attendu obtenus pas Parcet 2014.
منابع مشابه
Noncommutative Hardy algebras, multipliers, and quotients
The principal objects of study in this thesis are the noncommutative Hardy algebras introduced by Muhly and Solel in 2004, also called simply “Hardy algebras,” and their quotients by ultraweakly closed ideals. The Hardy algebras form a class of nonselfadjoint dual operator algebras that generalize the classical Hardy algebra, the noncommutative analytic Toeplitz algebras introduced by Popescu i...
متن کاملPseudo-localization of Singular Integrals and Noncommutative Calderón-zygmund Theory
After the pioneer work of Calderón and Zygmund in the 50’s, the systematic study of singular integrals has become a corner stone in harmonic analysis with deep implications in mathematical physics, partial differential equations and other mathematical disciplines. Subsequent generalizations of Calderón-Zygmund theory have essentially pursued two lines. We may either consider more general domain...
متن کاملSmooth Fourier Multipliers on Group Von Neumann Algebras
We investigate Fourier multipliers on the compact dual of arbitrary discrete groups. Our main result is a Hörmander-Mihlin multiplier theorem for finite-dimensional cocycles with optimal smoothness condition. We also find Littlewood-Paley type inequalities in group von Neumann algebras, prove Lp estimates for noncommutative Riesz transforms and characterize L∞ → BMO boundedness for radial Fouri...
متن کاملExploring Noncommutative Algebras via Deformation Theory
In this lecture 1 I would like to address the following question: given an associative algebra A 0 , what are the possible ways to deform it? Consideration of this question for concrete algebras often leads to interesting mathematical discoveries. I will discuss several approaches to this question, and examples of applying them. 1. Deformation theory 1.1. Formal deformations. The most general a...
متن کاملMultipliers in d-algebras
BCK and BCI-algebras, two classes of algebras of logic, were introduced by Imai and Iseki [1], Iseki [2] and Iseki and Tanaka [3] and have been extensively studied by various other researchers [4, 5]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [6, 7] a wider class of abstract algebras was introduced by Q.P.Hu and X.Li.They have shown that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2022
ISSN: ['0021-7824', '1776-3371']
DOI: https://doi.org/10.1016/j.matpur.2022.05.011